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MINIREVIEW

Nontraditional Therapies to Treat Helicobacter pylori Infection

The Gram-negative pathogen Helicobacter pylori is increas-
ingly more resistant to the three major antibiotics (metroni-
dazole, clarithromycin and amoxicillin) that are most com-
monly used to treat infection. As a result, there is an increased 
rate of treatment failure; this translates into an overall higher 
cost of treatment due to the need for increased length of treat-
ment and/or the requirement for combination or sequential 
therapy. Given the rise in antibiotic resistance, the compli-
cated treatment regime, and issues related to patient comp-
liance that stem from the duration and complexity of treat-
ment, there is clearly a pressing need for the development of 
novel therapeutic strategies to combat H. pylori infection. 
As such, researchers are actively investigating the utility of 
antimicrobial peptides, small molecule inhibitors and natu-
ropathic therapies. Herein we review and discuss each of 
these novel approaches as a means to target this important 
gastric pathogen.

Keywords: Helicobacter pylori, novel antibiotics, antimicro-
bial peptides, small molecule therapeutics, phytoceuticals

Introduction

Helicobacter pylori, a microaerophilic, spiral-shaped, flagel-
lated, Gram-negative bacterium has evolved to colonize the 
human gastric mucosa. The bacterium was first isolated by 
Warren and Marshall in 1982 (Warren and Marshall, 1983) 
and has since been linked with development of severe gas-
trointestinal diseases such as chronic gastritis, gastric and 
duodenal ulcers and gastric cancer (Marshall et al., 1984; 
Isaacson, 1994; Peek and Blaser, 1997). As a result, the World 
Health Organization International Agency for Research on 
Cancer has classified H. pylori as a group I carcinogen, dis-
tinctively making this bacterium the only known bacterial 

carcinogen (WHO, 1994). Since its discovery, evidence of the 
role of H. pylori as a major human gastrointestinal pathogen 
has steadily accumulated (Glassman et al., 1990; Isaacson, 
1994; Peek and Blaser, 1997). Currently, it is estimated that 
half of the world’s population carry the bacterium (Pounder 
and Ng, 1995; Dunn et al., 1997; Suerbaum and Josenhans, 
2007). However, the prevalence of infection varies widely 
based on geographic location, age, and socio-economic status 
(Everhart, 2000). Infection rates are higher in developing 
countries (50–90%) than in developed countries, where pre-
valence may be as low as 10–20% (Parsonnet, 1993; Everhart, 
2000; Calvet et al., 2013). Lower infection rates have been 
observed with improved sanitation and hygiene, possibly 
suggesting fecal contamination as a mode of transmission 
(Rowland and Drumm, 1995; Bourke et al., 1996). However, 
other studies have strongly suggested oral-oral or gastro-oral 
transmission (Rowland and Drumm, 1995). Thus, the route 
of transmission remains poorly defined and little or nothing 
is known about the infectious dose required to infect a human 
during the process of natural transmission.
  The current standard antibiotic-based treatments for H. 
pylori infection have recently become less practical for global 
control and/or eradication because they are not always effec-
tive (Bazzoli et al., 2002). This reduced efficacy has largely 
been attributed to the fact that H. pylori has developed resis-
tance to virtually all antibiotics (Jones et al., 2008). Moreover, 
treatment regimens have evolved from monotherapy to tri-
ple, quadruple and sequential therapies that extend up to 14 
days of duration and result in high treatment cost as well as 
significant patient compliance issues; the prolonged treat-
ment duration along with accompanying gastrointestinal 
discomfort often cause patients to stop taking their medi-
cations early or to only take them intermittently. These prac-
tices often lead to incomplete eradication and relapse of in-
fection and may enhance the emergence of antibiotic resis-
tance. Indeed, the lack of patient compliance and high H. 
pylori mutation frequencies are the two major factors that 
drive the development of antibiotic resistance (Malfertheiner, 
1993; Versalovic et al., 1996).
  Although the current management of H. pylori infection 
involves treatment with antibiotics, clearly novel therapies 
that target alternative microbial pathways and that are not 
circumvented by existing bacterial antibiotic resistance stra-
tegies would be incredibly useful. In order for these novel 
therapies to be most effective, they should be simple and act 
quickly so that the bacteria have less time to develop resis-
tance. These tasks are challenging enough on their own, but 
there are additional physiological and physical challenges 
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that must be overcome for any novel therapeutics that will 
target H. pylori. These include the low intra-gastric pH found 
in the stomach, which may inhibit the effectiveness of ther-
apeutic compounds, as well as the need to either penetrate 
the gastric mucus layer where H. pylori resides or to enter 
the circulatory system and then reach the bacteria from 
that route. The challenges associated with developing novel 
anti-H. pylori therapies have necessitated that researches 
employ increasingly creative strategies. Despite the fact that 
few of these potential new treatments have currently been 
tested thoroughly in the clinic, significant research progress 
in this area has been made over the last several years.
  Herein, we discuss current therapies and review several 
non-traditional strategies that are currently being devel-
oped to control H. pylori infection. These non-traditional 
approaches are broadly divided into two main categories: 
1) novel “synthetic” means of treatment, which include new 
classes of antimicrobial peptides and small molecule inhi-
bitors, and 2) “natural” treatment options, which include 
the use of probiotics and naturopathic therapies to treat H. 
pylori infection.

Current antibiotic therapies
The current recommended first line anti-H. pylori regimen 
is 10–14 days of a triple drug therapy that contains a pro-
ton pump inhibitor (PPI), amoxicillin and clarithromycin 
or metronidazole (Malfertheiner et al., 2007, 2012). As a 
second-line of treatment, a quadruple drug therapy with a 
proton pump inhibitor, bismuth salt, tetracycline, and met-
ronidazole can be given for 14 days (Malfertheiner et al., 
2007, 2012). Unfortunately, the efficacy of first and second 
line therapies has fallen; treatment failures have recently 
been noted in up to 20–30% of patients (70–80% treatment 
success rate) (Bertoli Neto et al., 2006). This success rate 
does not reach the suggested “ideal” rate of >90% treatment 
success, and does not even meet the current requirements 
that are expected of new antibiotics in development. In situa-
tions where the first or second line therapies are not effec-
tive in clearing the infection, one of the following treatment 
regimens may be given: 1) a 14 day concomitant quadruple 
treatment regimen that consists of a PPI, amoxicillin, clari-
thromycin and a nitro-imidazole, 2) a 10 day sequential treat-
ment that consists of a PPI plus amoxicillin for the first 5 
days followed by a PPI, clarithromycin and a nitro-imida-
zole for the following 5 days, or 3) a 14 day quadruple ther-
apy supplemented with bismuth (Graham and Fischbach, 
2010). A clear downside to these complex regimens is that 
they employ more antibiotics, which increases the cost of 
therapy and patient non-compliance.
  The driving factor, that has changed how anti-H. pylori 
therapies are administered, is the increase in resistance to 
first line drugs like clarithromycin and the nitro-imidazoles 
(e.g. metronidazole). Currently, resistance rates for these 
drugs range from 1.7–28% for clarithromycin and 20–39% 
for metronidazole (Wong et al., 2003; Molina-Infante et al., 
2013). Importantly, a high percentage of metronidazole re-
sistant strains (~85%) are also clarithromycin resistant, which 
further decreases the effectiveness of treatment regimens 
that utilize these drugs in combination (Nardone, 2000; 
Queiroz et al., 2002). Given these current levels of resistance, 

it is likely that similar degrees of treatment failure will be 
seen with sequential therapy as have been observed with the 
standard triple-drug treatment regimens. In contrast to clari-
thromycin and metronidazole, resistance to amoxicillin is 
rare and this drug remains effective against most strains of 
H. pylori (Huang and Hunt, 2003). As a result, amoxicillin 
is one of the few traditional antibiotics that continue to be 
effective in clearing H. pylori infection, albeit in combina-
tion therapy.
  Taken together, these factors highlight the great need for 
new antibiotics and/or new classes of antimicrobials that 
employ novel modes of action to successfully combat H. 
pylori infection. In response to this great need, recent studies 
have highlighted several novel therapeutic approaches that 
could potentially be used to develop novel classes of anti-
biotics. These strategies include the use of natural and syn-
thetic antimicrobial peptides, small molecule inhibitors and 
naturopathic therapy.

Antimicrobial peptides (AMPs)
Although there are an increasing number of therapeutic 
options for targeting Gram-positive bacteria, the develop-
ment of new classes of antibiotics that are effective against 
Gram-negative bacteria has lagged behind (Livermore, 2009). 
Gram-negative bacteria owe their resistance to currently 
used antibiotics largely to the outer membrane (OM) and 
OM-associated cell surface structures. This structure, which 
is stabilized by LPS, acts as a permeability barrier that is 
able to efficiently block many antimicrobial compounds from 
reaching their intracellular targets (Delcour, 2009). In ad-
dition, other key resistance mechanisms such as efflux pump 
systems that remove antibiotics from the bacterial cell, rely 
on the ability of the OM to maintain sub-lethal drug con-
centrations in the periplasm (Nikaido, 2003). Given the im-
portance of these OM components, it is perhaps no surprise 
that nearly every organism that can be infected with Gram- 
negative bacteria produces host defense molecules that tar-
get this structure. One such group of molecules that target 
the Gram-negative cell wall is the antimicrobial peptides 
(AMPs) (Jenssen et al., 2006). Given the increase in antibiotic 
resistance rates seen in Gram-negative bacteria over the last 
decade, these molecules have gained a renewed interest as a 
possible treatment option. As such, natural as well as syn-
thetic AMPs are actively being investigated.
  Natural AMPs: AMPs are a core component of the innate 
immune system of numerous eukaryotes (Andreu and Rivas, 
1998). While AMPs are highly conserved among these or-
ganisms, and may share cationic and amphipathic proper-
ties, these molecules can also maintain a great deal of diver-
sity based on primary sequence, secondary structures and 
size (Zasloff, 2002). The cationic AMPs have the ability to 
interact with the anionic bacterial cell wall due to charge elec-
trostatic attractions. However, there is accumulating evidence 
that suggests that peptide hydrophobic properties also enable 
interaction and insertion into the hydrophobic core of the 
cell wall to form transmembrane pores (Lockey and Ourth, 
1996; Matsuzaki, 1998). In some instances, the AMP may 
directly interact with specific glycoproteins or glycolipids in 
the cell membrane (Breukink et al., 1999).
  There are three families of natural antimicrobial polypep-
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tides among the AMPs produced in the stomach: elafins, 
defensins, and cathelicidins. Of the three, defensins and 
cathelicidins are the two examples of principal human anti-
microbial peptides that display activity against H. pylori. 
For example, LL-37, which is a member of the cathelicidin 
family of peptides that is also known as human cationic an-
timicrobial peptide 18 (hCAP18), has been demonstrated 
to show antimicrobial activity against H. pylori. LL-37 pri-
marily exerts its direct effect by binding LPS, but also has 
chemotactic activities that help in the recruitment of in-
flammatory cells (Hase et al., 2003; Leszczynska et al., 2009). 
Similar to the cathelicidins, defensin peptides have also been 
shown to inhibit H. pylori (Hamanaka et al., 2001; Uehara 
et al., 2003). Recent studies have demonstrated that of the 
four known human β-defensins (HBD), HBD-1, HBD-2, 
HBD-3, and HBD-4, only HBD-2 and HBD-3 are potent 
against H. pylori (Kawauchi et al., 2006; Nuding et al., 2013). 
Interestingly, although ineffective against H. pylori, HBD-4 
is known to be effective against other bacterial species such 
as Enterococcus faecalis (Lee and Baek, 2012); this perhaps 
suggests that evolution can contribute to the ability of some 
bacteria to evade some AMPs.
  Despite the sustained potency of natural AMPs against 
bacteria, some bacterial pathogens have also developed re-
sistance to many of these AMPs (Guo et al., 1998; Peschel 
et al., 2001; Jin et al., 2004). The mechanisms utilized by bac-
teria to evade natural AMPs have been well-documented 
(Shafer et al., 1998; Peschel, 2002) and include 1) repulsion 
of AMPs by reducing the net negative charge of the bacte-
rial cell wall via covalent modification of anionic molecules 
such as teichoic acids, phospholipids or lipid A (Tran et al., 
2006); 2) pumping out AMPs through energy-dependent 
efflux pumps (Shen et al., 2010); 3) altering membrane flui-
dity (Bayer et al., 2000; Andra et al., 2011); and/or 4) cleaving 
AMPs with OM proteases (Guina et al., 2000; Schmidtchen 
et al., 2002). Outside of these types of potential resistance 
mechanisms, a major barrier to implementing the use of na-
tural AMPs to treat H. pylori infection is the fact that many 
of the AMPs undergo proteolytic cleavage by both the host 
digestive components as well as by bacterial enzymes (Sch-
midtchen et al., 2002). Despite the fact that resistance to 
AMPs has been observed, because these molecules have suc-
cessfully been a key component in combating bacterial in-
fection for millions of years, investigators have come to re-
alize that natural AMP structures may serve as the basis for 
designing new synthetic AMPs that may overcome some of 
the challenges seen with natural AMPs.
  Synthetic AMPs: Oligo acyl lysyl peptides (OAKs): Recently, 
several synthetic mimetics of natural AMPs have been deve-
loped for use as antimicrobials (Basile et al., 2006; Radzi-
shevsky et al., 2008; Makobongo et al., 2009, 2012). Among 
the best characterized of those mimetics is a class of copoly-
mer compounds referred to as oligo-acyl-lysyl (OAK) pep-
tides. OAKs consist of tandem repeats of alternating acyl 
chains and lysine residues, a novel design that mimics the 
primary structure and function of natural AMPs, but does 
not form stable secondary structures (Radzishevsky et al., 
2008; Rotem and Mor, 2009; Zaknoon et al., 2009; Rotem 
et al., 2010). Physicochemical studies have shown that the 
activity of OAKs is derived from the peptide’s optimized 

size, charge, hydrophobicity and amphipathic organization 
(Brogden, 2005; Radzishevsky et al., 2007; Sarig et al., 2008; 
Epand et al., 2009). OAKs have broad spectrum antibacterial 
activity and have recently been shown to be highly potent 
against H. pylori in vitro (Makobongo et al., 2009) and in 
vivo (Makobongo et al., 2012). Like natural AMPs, OAKs 
have the ability to target both the bacterial cell wall as well as 
intracellular components (Makobongo et al., 2012). Although 
the specific target(s) of the OAKs in the cell membrane(s) of 
Gram-negative bacteria is unknown, it is believed that the 
peptides interact with LPS and permeabilize the cell via pore 
formation (Makobongo et al., 2012). In addition, some OAKs 
such as C12K-2β12 (Makobongo et al., 2012) and C12K-5α8 
(Rotem et al., 2008) may have the ability to enter the cell 
and bind to nucleic acids. Consistent with this idea, the C12K- 
2β12 OAK was shown to have dual modes of action against 
H. pylori in vitro; at high concentrations, the peptide results 
in irreversible pore formation, whereas at lower concentra-
tions the peptide reaches the intracellular compartment and 
binds to RNA and DNA (Makobongo et al., 2012). An attrac-
tive feature of using OAKs as antimicrobials is that the pep-
tides are devoid of known proteolytic cleavage sites, which 
makes these molecules resistant to enzymatic cleavage. In 
addition, OAKs such as C12K-2β12 have the advantage of mul-
tiple nonspecific modes of action, which may limit the ability 
of H. pylori to develop resistance.
  Although there are no clinical data regarding the effective-
ness of OAKs and other synthetic AMPs in treating H. py-
lori infection, data from animal models suggest that these 
molecules could be a promising alternative to the current 
treatment options. In a recent study, therapeutic treatment 
of H. pylori-infected Mongolian gerbils 1 week post-infection 
with sequential daily doses of C12K-2β12 resulted in a signi-
ficant reduction in stomach colonization burden (Makobongo 
et al., 2012). Other studies also suggest the possibility of sy-
nergistic activity when OAKs are used in combination with 
conventional antibiotics (Makobongo et al., 2009). Thus, 
OAKs may also be useful in combination therapies to treat 
H. pylori infection. Taken en masse, data indicate that syn-
thetic AMPs may have a promising future as potential novel 
therapies that can be used to treat H. pylori infection.

Small molecule inhibitors as anti-H. pylori therapies
Another group of therapeutics that is currently being con-
sidered for treating H. pylori infection is composed of small 
molecule inhibitors. Characteristically, small molecule ther-
apeutic activity is based on the ability to inactivate or alter 
the function of bacterial enzymes. In order to be effective, 
the small molecule target needs to be conserved among all 
strains, be ubiquitously expressed, and should not be pre-
sent in humans. To date, several candidate small molecules 
have been evaluated for activity against H. pylori (Table 1).
  Of the small molecules that have been tested, perhaps the 
best characterized is SQ109 (Protopopova et al., 2005; Mako-
bongo et al., 2013). This drug, N-geranyl-N’-(2-adamantyl) 
ethane-1, 2-diamine, was originally developed as an anti- 
tuberculosis therapeutic and has been shown to be both safe 
and well-tolerated in three human safety trials (Horwith et 
al., 2007; National Institute of Allergy and Infectious Diseases 
(NIAID), 2010). During the development of SQ109 as an 
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Table 1. Small molecule inhibitors

Small molecule (name) H. pylori target
Effective dose

References
IC50 MIC

N-geranyl-N'-(2-adamantyl) ethane-1,2 diamine (SQ109) Unknown ND 6–10 μM Makobongo et al. (2013)
Pyrazolopyrimidinediones MurI ND 1–64 μM de Jonge et al. (2009)
Pyridodiazepines MurI 1.7 μM 0.5 μg/ml Geng et al. (2009)
Sulfonamides/Sulfamates β-Carbonic anhydrase 54–105 nM ND Nishimori et al. (2007)
Thiadiazolidine-3, 5-dione (CHIR-1) Cagα ATPase 0.45 μM ND Hilleringmann et al. (2006)
Pyrimidopyridone/Cyanothiophene AddAB 13–96 μM ND Amundsen et al. (2008)
N-(4-Aminobutyl)-2-fluoro-ethanimidiamide (ABFA) Agmatine deaminase 6.8 μM ND Jones et al. (2010)
N-(4-Aminobutyl)-2-chloro-ethanimidiamide (ABCA) Agmatine deaminase 0.87 μM ND Jones et al. (2010)
8-Hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-
5-sulfonic acid

Shp2 protein tyrosine 
phosphatase (PTP) 0.269–0.367 μM ND Chen et al. (2006)

Compound A Glutamate racemases 1.4 μM 4 μg/ml Lundqvist et al. (2007)
IC50, inhibitory concentration 50%; MIC, minimum inhibitory concentration; ND, not determined

anti-tuberculosis treatment, pharmacokinetic studies re-
vealed that the drug was present in high concentrations in 
the stomach (Jia et al., 2005, 2006); this finding prompted 
further studies to determine whether SQ109 could be used 
as an anti-H. pylori drug. A recent publication (Makobongo 
et al., 2013) evaluated the efficacy of SQ109 against a panel 
of laboratory derived and clinically isolated H. pylori strains 
in vitro. In that study, all H. pylori strains tested were highly 
susceptible to SQ109. In addition to being effective at rela-
tively low concentrations, the drug retained the ability to 
kill the bacteria at low pH, and was effective at killing slow 
growing or static bacteria. These qualities make SQ109 an 
attractive option for treating H. pylori, since the bacteria 
reside in or near a low pH environment and are typically slow 
growing in vivo. In a molar-to-molar comparison, SQ109 
was more effective than commonly used therapeutic anti-
biotics such as amoxicillin and metronidazole. As with the 
currently used antibiotics, a key determinant in the effec-
tiveness of any potential new antimicrobial is whether or 
not the target organism is able to develop resistance to the 
drug. Importantly, preliminary in vitro studies indicate H. 
pylori resistance rates to SQ109 are low (Makobongo et al., 
2013). Although the precise mechanism of action of this drug 
against H. pylori is unknown, when taken together with the 
previously established clinical safety trials that indicate that 
the drug is well tolerated in humans (National Institute of 
Allergy and Infectious Diseases (NIAID), 2010). The in vitro 
studies suggest that SQ109 could potentially be used as an 
anti-H. pylori monotherapy. Indeed, a Phase IIA and a Phase 
IIB clinical trial (SQ109 alone and SQ109 plus a proton pump 
inhibitor [PPI], respectively) have been conducted; results 
suggest SQ109 was more effective when used with a PPI. 
Based on these results a Phase IIC clinical trial of SQ109 
plus conventional antibiotics is currently being conducted 
(Sequella, 2003).
  A key component of survival of all microorganisms is main-
taining the integrity of the cell wall. This requirement has 
long been exploited as a microbial weakness by natural an-
timicrobials as well as those designed in the laboratory. For 
example, the β-lactam class of antibiotics (e.g. penicillins, 
cephalosporins, carbapenams, and monobactams) inhibits 
a key step in cell wall biosynthesis resulting in bacterial killing. 
Because cell wall synthesis in bacteria is a complex process 

that involves multiple enzyme-dependent biosynthetic re-
actions, there are several enzymes that could potentially 
serve as targets for small molecules. One such enzyme that 
has been targeted by multiple small molecules is the gluta-
mate racemase (MurI). MurI functions to convert L-gluta-
mate to D-glutamate (van Heijenoort, 2001), which is an 
essential step in peptidoglycan formation.
  Within the past several years, there have been several 
screens to identify H. pylori MurI inhibitors (Lundqvist et 
al., 2007; de Jonge et al., 2009; Geng et al., 2009). Using a 
high-throughput screening technique (Lundqvist et al., 2007), 
de Jonge and colleagues identified a novel group of pyr-
azolopyrimidinediones that exhibit H. pylori-specific anti- 
MurI activity (de Jonge et al., 2009). The effective dose of the 
six compounds that were analyzed ranged from 1–64 μM 
(reported as MIC90), and activity depended on the specific 
analogue tested as well as the strain of H. pylori examined. 
One of the pyrazolopyrimidinedione compounds was also 
tested against a broad range of non-Helicobacter bacterial 
species; interestingly the tested molecule (referred to as com-
pound D in that study) displayed no antimicrobial activity 
against any of the other bacterial species; thus, the drug shows 
specificity for H. pylori MurI. Spontaneous resistance to the 
pyrazolopyrimidinedione compounds in H. pylori was rela-
tively low. While these in vitro studies suggest that this 
group of pyrazolopyrimidinedione compounds could be used 
to combat H. pylori infections, studies that evaluate the drug’s 
safety and pharmacokinetic properties are needed to deter-
mine the full utility of pyrazolopyrimidinediones in anti-H. 
pylori therapy.
  Given the importance of the MurI enzyme in cell wall bio-
synthesis, it is perhaps not surprising that multiple small 
molecule compounds have been developed to target MurI. 
Based on the same high throughput screen that led to the 
discovery of the pyrazolopyrimidinedione compounds (Lund-
qvist et al., 2007; de Jonge et al., 2009), another group of 
small molecules called pyridodiazepine amines, were also 
selected as highly specific anti-H. pylori MurI inhibitors 
(Geng et al., 2009). These molecules, a group of pyridodia-
zepine amines, share several characteristics with the pyra-
zolopyrimidinediones. For example, pyridodiazepine amines 
display a low H. pylori MurI inhibitory concentration (IC50 
= 1.7 μM), as well as low MICs against H. pylori in culture 
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(Geng et al., 2009). Furthermore, the pyridodiazepine amines 
are also highly selective for H. pylori, and are not effective 
against other pathogens such as Escherichia coli, Staphylo-
coccus aureus, and Enterococcus faecalis. These findings, com-
bined with the data from the evaluation of the pyrazolopy-
rimidinedione compounds, suggest that MurI is an excellent 
target for H. pylori-specific antimicrobial therapy. However, 
similar to the pyrazolopyrimidinediones, further studies are 
needed to fully evaluate the utility of the pyridodiazepine 
amines as an anti-H. pylori therapy.
  Another essential enzyme that has been targeted by small 
molecule therapeutics is the H. pylori β-carbonic anhydrase 
(Nishimori et al., 2007). This enzyme, which catalyzes the 
hydration of carbon dioxide to bicarbonate and a proton, is 
thought to play an important role in urea and bicarbonate 
metabolism in H. pylori. Due to the essential nature of these 
metabolic intermediates in the ability of H. pylori to survive 
low pH, disrupting these pathways at the level of carbon di-
oxide hydration is an attractive strategy. Consistent with 
this line of thinking, a screen against the purified recombi-
nant H. pylori β-carbonic anhydrase enzyme identified sev-
eral potent anti-β-carbonic anhydrase molecules, that be-
longed to the sulfonamide and sulfamate classes of inhibitors 
(Nishimori et al., 2007). Notably, while these in vitro enzyme 
inhibition studies are suggestive, the lack of in vivo efficacy 
data makes it difficult to predict how effective these com-
pounds will actually be against H. pylori. Despite this un-
certainty, the fact that many of these compounds are already 
proven to be safe and well tolerated in humans should prove 
to be beneficial if they are pursued as therapies.
  Most traditional antibiotic agents target essential cellular 
components or pathways whose loss results in cellular stasis 
or death. A fairly recent approach to treating infections is to 
target bacterial components or processes that are important 
for virulence of the organism rather than basic cellular 
function. An attractive feature of this approach is that be-
cause the drug targets are not essential for viability per se, 
the likelihood of selecting for and enriching compensatory 
mutations that confer drug resistance is presumably less 
likely. In the case of H. pylori, this approach was applied to 
identify compounds that inhibit the activity of Cagα, which 
is the VirB11-type ATPase required for translocation of the 
CagA oncoprotein (Hilleringmann et al., 2006). A high 
throughput screen directed against purified Cagα identified 
three compounds that inhibited activity of the ATPase. All 
three compounds (CHIR-1, -2, and -3) were highly effec-
tive in in vitro enzymatic assays, with IC50 values of <1 μM. 
Two of the three compounds are thiadiazolidine-3, 5-diones, 
and are closely related structurally. From that pair, CHIR-1 
was the most potent. Consistent with inhibition of the Cagα 
ATPase, H. pylori cells treated with CHIR-1 display an ac-
cumulation of the CagA protein; the protein is not trans-
located into target host cells. Furthermore, CHIR-1 signifi-
cantly decreased CagA-dependent IL-8 secretion from host 
cells that were co-cultured with H. pylori. Combined, these 
in vitro studies indicate that CHIR-1 acts as an effective 
means to prevent translocation of CagA into host cells. In 
addition to effectively inhibiting the Cagα ATPase and CagA 
secretion in vitro, CHIR-1 treatment also significantly reduced 
the H. pylori gastric colonization load in a murine infection 

model, which suggests that the drug is available within the 
gastric mucosa (Hilleringmann et al., 2006). Currently, further 
work is needed to fully demonstrate the effectiveness of 
CHIR-1, -2, and -3 as therapeutics.
  A key determinant in the successful persistence of H. pylori 
within the host is the ability to repair DNA damage. One of 
the major enzymes that facilitates repair of DNA breaks and 
homologous recombination in H. pylori is the helicase-nu-
clease enzyme AddAB (Amundsen et al., 2008). As a result 
of this enzyme’s essentiality, as well as the high prevalence of 
this enzyme among bacteria, high-throughput screens have 
been used to identify inhibitors of AddAB activity (Amundsen 
et al., 2008). Several compounds that effectively and selec-
tively inhibited AddAB enzyme activity have been identified. 
Two of the most potent inhibitors (CID 1045135, a pyrimi-
dopyridone; CID 2295461, a cyanothiophene) inhibited the 
double-stranded exonuclease activity of AddAB at relatively 
low concentrations (Table 1). Subsequent analysis of mole-
cules structurally related to the potent pyrimidopyridone and 
cyanothiophene compounds allowed the identification of 
two additional inhibitors of AddAB activity, CID 697851 (a 
cyanothiophene) and CID 1517823 (a pyrimidopyridone). 
Of this set of compounds, CID 697851 was the most effec-
tive AddAB inhibitor tested, with an IC50 of 13 μM. Similar 
to the other compounds, CID 697851 inhibited the AddAB 
exonuclease activity, but not helicase activity. While the spe-
cific mechanism of inhibition has not been determined for 
these small molecules, these findings perhaps suggest a com-
mon mode of action between these inhibitors. As with most 
of the anti-H. pylori small molecules described to date, the 
in vitro results with these pyrimidopyridone and cyano-
thiophene compounds are promising. However, whether or 
not these small molecule inhibitors would be effective treat-
ment for H. pylori infection will require further testing.
  Other common targets for small molecule therapeutics 
are often components involved in metabolic pathways. One 
such factor that has been targeted in H. pylori is the agma-
tine deaminase enzyme (HpAgD), which catalyzes the for-
mation of N-carbamoyl putricine and ammonia from agma-
tine (Jones et al., 2010). Though not considered a bona fide 
virulence factor, because the substrate of agmatine deami-
nase stimulates the innate immune system, this enzyme may 
play a role in disease pathogenesis by affecting the levels of 
agmatine in vivo (Jones et al., 2010). Using purified recom-
binant HpAgD, Jones and colleagues designed and charac-
terized two potent haloacetamidine-based HpAgD inhibi-
tors: N-(4-aminobutyl)-2-fluoro-ethanimidamide (referred 
to as ABFA), and N-(4-aminobutyl)-2-cholo-ethanimidamide 
(referred to as ABCA) (Jones et al., 2010). Both of these ra-
tionally designed compounds share the same mode of action, 
namely modification of the catalytic Cys324 residue within 
the HpAgD active site. The IC50 values for these compounds 
are in the low micromolar range (~0.87 μM for ABCA, ~6.8 
μM for ABFA), and both are highly selective for HpAgD 
(Jones et al., 2010). Combined with good water solubility 
and irreversible inactivation of HpAgD, these small mole-
cules may have potential as possible anti-H. pylori thera-
peutics. However, despite strong in vitro inhibition of en-
zyme activity, neither of these compounds has yet been 
tested against H. pylori in culture. Thus, it remains unclear 
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Table 2. Representative phytotherapy examples
Phytotherapeutical 

extracts
Active/ Principle 

constituent(s)
Effective dose

H. pylori Target/Mechanism References
IC50 MIC

Cinnamon extract Cinnamic aldehyde, 
eugenol and terpenes

ND 0.04–1.0 mg/ml  Anti-inflammatory effects-block
 the production of IL-1, IL-6 
and the TNF-α

Nir et al. (2000), 
Bergonzelli et al. (2003)

Broccoli sprouts Sulforafane ND 2–4 μg/ml 
(MIC90); Plant: 
0.125 mg/ml 

(w/v)

 Anti-inflammatory effects-
IL-1β, IL-8, and TNF-α; Reduce 
colonization and attenuate gastritis

Fahey et al. (2002), 
Yanaka et al. (2009), 
Keenan et al. (2012)

Manuka honey Sugar ND ND  High viscosity and osmotic 
potential due to sugar content

al Somal et al. (1994), 
Ndip et al. (2007), 
Keenan et al. (2012)

Omega-3 oil/fatty acids Docosahexaenoic acid

Omega-3 Linolenic acid 

ND 100–500 μM 
(MIC90)

1.8–5 × 10-4 M

Anti-inflammatory effects 
and anti-H. pylori adhesion to 
epithelial gastric cells 

Thompson et al. (1994), 
Keenan et al. (2012)

Essential oils (cloves, 
oregano, aniseed, mint, 
carrot seed)

α-Bisabolol 0.017–0.146 
μg/ml

ND Anti-inflammatory and anti-
ulcerogenic effects

Bergonzelli et al. (2003), 
Cwikla et al. (2010), 
Silverio et al. (2013)

Curcuma longa (turmeric)  Curcumin ND 6.25–50 μg/ml Anti-inflammatory effects-
suppress TNF-induced NF-κB 
activation and IL-8 release

Mahady et al. (2002), 
De et al. (2009), 
Koosirirat et al. (2010), 
Vitor and Vale (2011)

Anisomeles indica 
(Labiatae)

Ovatodiolide (OVT), 
pedalitin, scutellarein 
7-O-beta-d-glucuronide 
methyl ester, and acteoside

ND 0.06 μM (OVT); 
50–100 μg/ml 

(Extracts)

Anti-inflammatory effects-
inhibits bacterial LPS induced 
NF-kB activation, iNOS, NO, TNF-α, 
IL-12, and IL-8 

Rao et al. (2009), 
Lien et al. (2013)

Cyrtocarpa procera Kunth 
(Anacardiaceae) 

Unknown ND 7.81 μg/ml Anti-inflammation and 
bacteriostatic and bactericidal

Escobedo-Hinojosa et al. 
(2012)

Rutaceae family, Citrus 
fruits-lemon peels, leaves, 
pulp etc.

Pierene, β-pinene, 
geranyloxycoumarin 
Auraptene, Limonene

ND 75–500 μg/ml Anti-inflammation and anti-
colonization

Rozza et al. (2011), 
Sekiguchi et al. (2012)

Calophyllum brasiliense 
(Clusiaceae) 

Unknown <25 μg/ml ND Modulation of endogenous 
antioxidant systems

Lemos et al. (2012)

Bridelia micrantha 
(Euphorbiaceae)

Alkaloids, flavonoids, 
steroids, tannins 
and saponins

ND 0.0048–0.625 
mg/ml

 Inhibition of DNA gyrase and 
FabZ enzyme

Zhang et al. (2008), 
Okeleye et al. (2011)

Sclerocarya birrea 
(Anacardiaceae)

Essential oils, with terpinen- 
4-ol, pyrrolidine, aromaden-
drene and α-gurjunene in 
order of abundance. 

310 μg/ml to 
2500 μg/ml

MIC50 = 
0.004–6.3 μg/ml

Increased bacterial cell membrane 
fluidity and permeability

Njume et al. (2011)

Enantia chlorantha 
(Annonaceae) 

Unknown ND MIC = 0.39 
mg/ml; MBC = 

1.56 mg/ml;

 Anti-gastritis Tan et al. (2010)

Pelargonium sidoides ex-
tract (Eps 7630)

Glucuronic acid-enriched 
polysaccharides, tannin-like 
proanthocyanidin

ND 0.001 to 
10 mg/ml

Anti-bacterial adhesins Wittschier et al. 
(2007a and 2007b)

Allium sativum L. (Garlic) Thiosulfinates (allicin) ND 40 μg/ml Membrane lipid, total inhibition of 
RNA synthesis 

Sivam et al. (1997), 
Sivam (2001)

IC50, inhibitory concentration 50%; MIC, minimum inhibitory concentration; ND, not determined

whether successful inhibition of HpAgD and the resulting 
increased levels of agmatine would affect H. pylori growth, 
survival and/or disease pathogenesis.
  Although the number of small molecules that have been 

tested against H. pylori is relatively small, there are several 
important enzymes/proteins that could potentially be tar-
geted in the future. One such protein is flavodoxin, a small 
redox protein that serves as the electron acceptor for the 
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pyruvate-oxidoreductase enzyme complex (POR) (Cremades 
et al., 2005). In addition to being essential for H. pylori sur-
vival, this enzyme is not found in humans, which makes 
flavodoxin an attractive therapeutic target. In vitro studies 
using purified H. pylori flavodoxin suggest that the binding 
site in this enzyme is accessible to water and can bind small 
molecules such as benzylamine (Cremades et al., 2005); how-
ever, no studies have been performed to determine whether 
this water accessible site could actually be exploited as a 
therapeutic target.
  Another enzyme that is crucial to the in vivo survival of H. 
pylori is urease. This enzyme converts urea to carbon dioxide 
and ammonia, which buffers the environmental pH and en-
ables H. pylori to survive pH stress. Given the available 
structural information (Ha et al., 2001) and the fact that H. 
pylori urease has been extensively characterized (Dunn et 
al., 1990; Mobley et al., 1995; McGee and Mobley, 1999; 
McGee et al., 2002; Nolan et al., 2002), this enzyme seems 
like a reasonable target for future rational drug design.
  Small molecule therapeutics represent a potentially impor-
tant means of controlling H. pylori infection. However, 
there are several major hurdles that must first be overcome 
if these compounds are to be used clinically. The most im-
portant hurdle for many of the compounds described above 
is to determine whether in vitro enzyme inhibition translates 
to bacterial killing or stasis of bacterial growth. For the com-
pounds that have established desirable MIC and/or MBC 
values, the next hurdle would be to determine whether the 
drugs are safe in animal models and to evaluate pharmaco-
kinetics and bioavailability in vivo. Finally, after all of those 
requirements are successfully met, the most significant hur-
dle is to bring the drug into human safety and efficacy trials. 
Of all the small molecules discussed here, only SQ109 and 
the carbonic anhydrase inhibitors have been proven safe in 
humans, and have established pharmacokinetic and bio-
availability data. As a result, these compounds seem most 
likely to make it into the market as anti-H. pylori thera-
peutics. Though the clinical utility of these compounds in 
treating H. pylori infection is still unclear, the data gathered 
so far indicate that these drugs may represent one of the 
better novel anti-therapeutic strategies.

Naturopathic therapy
Over the past two decades, the popularity of complementary 
and alternative medicine (CAM) has been increasing world-
wide. As a result, in Europe and North America the develop-
ment of CAM has been harmonized with training and regu-
lation of practitioners (Fisher and Ward, 1994; Eisenberg et 
al., 1998). Currently, it is estimated that in developed coun-
tries between 30–70% of patients use some form of CAM 
or naturopathic therapy to supplement their medical needs 
(Fisher and Ward, 1994; MacLennan et al., 1996; Eisenberg 
et al., 1998). In thinking about H. pylori infection, there is a 
growing body of evidence that suggests that certain types of 
CAM may provide an effective treatment method to control 
infection or disease symptoms. Broadly speaking those studies 
that appear most promising can be broken into two catego-
ries: probiotics and phytotherapy. Of these two, the potential 
use of probiotics to promote human health and prevent di-
sease has gained an enormous following (Varbanova et al., 

2011; Hungin et al., 2013). Those studies that have been fo-
cused specifically on H. pylori have recently been summa-
rized (Vitor and Vale, 2011). As such, rather than reiterating 
those results, we will focus our remaining discussion on 
the use of phytotherapy; those that are interested in the use 
of probiotics for treatment of H. pylori infection should ex-
amine the work of Vitor and Vale (2011).

Phytotherapy
Broadly defined, phytotherapy refers to the use of plants 
and/or their extracts as medicines or health-promoting agents, 
whereas phytoceutical refers to any plant or plant product 
that shows activity on biological systems (Vitor and Vale, 
2011). Whereas, some plant extracts are used in more tradi-
tional medicines, typically phytotherapy involves the utili-
zation of the plant or extract in its simplest or least processed 
form so as to preserve the active components in their natural 
state (Urr, 2003). The therapeutic use of plant-derived pro-
ducts, which is sometimes also referred to as herbal medi-
cine has been practiced for centuries, and is still practiced in 
many parts of the world today. However, despite its popu-
larity, many critics of phytotherapy exist. Concerns include 
the lack of systematic scientific research and large-scale 
randomized clinical trials as a means to prove effectiveness, 
as well as issues with standardization, quality and safety 
(Posadzki et al., 2013). Despite these concerns, modern 
production and analytical technologies are being used as a 
means to standardize the production and formulation me-
thods of certain forms of phytotherapy. The remainder of 
this review will briefly highlight some of those phytotherapy 
approaches that have been investigated as H. pylori thera-
pies (Table 2); given the substantial literature on this topic 
and space limitations, our list will not be exhaustive, but will 
attempt to give the reader a “flavor” of the types of studies 
being pursued.
  Herbs and spices (oregano, chilli pepper, garlic, cloves, tur-
meric/curcumin): One of the most popular forms of phyto-
therapy involves the use of herbs and spices. Indeed, remedies 
continue to be used in a variety of cultures to treat a wide 
range of disorders (Nanji et al., 2003; Nicoll and Henein, 
2009). Scientific investigation into how these spices, herbs 
or their extracts work at the biological level has shown that 
many of them possess antimicrobial and anti-inflammatory 
activities (Pozharitskaya et al., 2010). Among these studies, 
several have identified specific anti-H. pylori compounds 
from specific phytoceuticals. The isolated products include 
phenolics from Decalepis hamiltonii (Srikanta et al., 2007), 
flavonoids in Cistus laurifolius leaves (Ustun et al., 2006), 
triterpenoids from Pteleopsis suberosa stem bark (De Leo et 
al., 2006), quinones from Tabebuia impetiginosa Martius ex 
DC (Taheebo) (Park et al., 2006) and carotenoids from 
golden delicious apple peel (Molnar et al., 2005, 2010).
  In addition to those studies that looked for specific bio-
logically active components of the phytoceutical, several 
preclinical in vivo experiments and clinical studies have 
demonstrated that certain herbs and spices have anti-ulcer 
properties mediated through their anti-H. pylori effects. 
For example, ginger rhizome extract has been shown to have 
gastro-protective activity via promotion of gastric mucin 
regeneration, increased expression of antioxidant enzymes 
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and inhibition of H. pylori growth (Mahady et al., 2005; 
Nanjundaiah et al., 2011; Haniadka et al., 2013). Similarly, 
cinnamon extracts have been demonstrated to inhibit H. 
pylori growth and affect enzymatic activity of urease (Tabak 
et al., 1999), which is essential for H. pylori colonization. 
Similarly, turmeric/curcumin (Koosirirat et al., 2010), chili 
(Lee et al., 2007b), and oregano (Lin et al., 2005) have been 
shown to have varying levels of bacteriocidal effects against 
H. pylori. Furthermore, garlic extracts and its active ingre-
dient, allicin, have been shown to contain H. pylori growth 
inhibitory properties when tested in vitro (Canizares et al., 
2002, 2004), in vivo in animal models (Iimuro et al., 2002), 
as well as in clinical trials (Martin and Ernst, 2003; Gail et 
al., 2007). Moreover, several studies have shown a reduced 
risk of gastric cancer with increased consumption of allium 
containing vegetables such as onions and garlic (Jonkers et 
al., 1999); this effect may possibly be due to an effect on H. 
pylori. Indeed, some studies have suggested that a combi-
nation regimen of garlic and omeprazole may be a more effi-
cacious eradication treatment than the conventional quad-
ruple therapy used to treat H. pylori infection (Fani et al., 
2007). Clearly, further clinical evaluations will be needed to 
determine the effectiveness of this as well as other herbs and 
spices as potential H. pylori therapeutics.
  Cruciferous vegetables (cabbages, cabbage sprouts and broc-
coli): Cruciferous vegetables such as cabbages and broccoli 
contain sulphoraphane, which is a biologically active iso-
thiocyanate (Warin et al., 2009). Sulphoraphane has been 
shown to inhibit H. pylori growth in vitro (Johansson et al., 
2008; Moon et al., 2010), and has further been demonstrated 
to reduce H. pylori colonization and attenuate gastritis in both 
mice and humans infected with the bacterium (Yanaka et 
al., 2009; Yanaka, 2011).
  Korean red ginseng and green tea: Korean red ginseng and 
green tea have been widely studied for their medicinal appli-
cations. Red ginseng contains ginsenosides that show inhi-
bitory activities against H. pylori (Bae et al., 2001), as well 
as the ability to block development of H. pylori-induced cy-
totoxicity, gastritis, ulcer and cancer through attenuation of 
5-LOX expression (Park et al., 2007; Lee et al., 2008). On the 
other hand, the inhibitory effects of green tea against H. 
pylori have been attributed to the presence of acidic polysac-
charides, epigallocatechin gallate (EGCG) and polyphenols 
as the active ingredients (Yanagawa et al., 2003). Green tea 
carbohydrates containing uronic acid have been shown to 
have the capacity to selectively block adhesion of H. pylori 
to host cell surface without interfering with adherence of 
commensal bacteria such as Lactobacillus acidophilus, Bifido-
bacterium bifidum, Escherichia coli, or Staphylococcus epi-
dermidis (Lee et al., 2009). Given that the adherence of H. 
pylori to gastric mucosal cells is a crucial event in coloniza-
tion and infection, blocking adherence may be a powerful 
strategy to control infection. Furthermore, protection against 
H. pylori-induced gastric epithelial cytotoxicity, which is 
considered to be the hallmark of ulceration, by green tea 
EGCG (Yanagawa et al., 2003; Lee et al., 2004; Song and 
Seong, 2007), as well as inhibition of H. pylori VacA by poly-
phenols (Tombola et al., 2003), indicate that green tea may 
protect against H. pylori-induced disease. Indeed, the pro-
tective effects of green tea polyphenols or catechins against 

development of gastritis and associated gastric damages have 
been demonstrated in mice (Ruggiero et al., 2007; Stoicov 
et al., 2009), rats (Lee et al., 2005), and Mongolian gerbils 
(Matsubara et al., 2003). Despite these promising results, 
clinical studies will be required to determine whether these 
findings can be translated to humans.
  Extracts of oils, resveratrol, beta-carotene: Additional phy-
toceuticals that have been shown to have anti-H. pylori ef-
fects include extracts of oils, resveratrol, and beta-carotene. 
Similar to green tea, garlic oil, olive oil, mastic oil, pine nut 
oil, and chamomile oil each contain polyphenols that have 
been shown to possess potent bactericidal effects (Romero 
et al., 2007; O’Gara et al., 2008; Eftekhar et al., 2009), anti-
oxidant properties that can reduce inflammation via inhibi-
tion of neutrophil activation (Kottakis et al., 2009), and even 
the ability to inhibit the production of H. pylori urease 
(Shikov et al., 2008). Similar to the oil polyphenols, resver-
atrol is a polyphenol that is mainly found in wine; resvera-
trol has been shown to have a potent inhibitory effect against 
H. pylori (Mahady et al., 2003) and the ability to suppress 
gastritis in H. pylori-infected mice (Ruggiero et al., 2007). 
In comparison, beta-carotene, which was mainly obtained 
from carrots, has been shown to inhibit oxidant-mediated 
activation of inflammatory signaling through MAPK, NF-kB 
and AP-1. This in turn results in suppression of iNOS and 
COX-2 expression in H. pylori-infected human gastric epi-
thelial cells (Jang et al., 2009). Given the promising effects of 
these various phytoceuticals, it is possible that some of these 
compounds could be exploited to reduce H. pylori coloniza-
tion, inflammation and gastric mucosal damage.
  Flavonoids and vitamins: Flavonoids and vitamins owe 
their anti-H. pylori activities mainly to their antioxidant pro-
perties; oxidative stress plays a significant role in exacerba-
ting mucosal damage during H. pylori infection. Flavonoids 
have been suggested to block H. pylori-induced inflamma-
tion in human gastric cancer cells via their ability to target 
NF-kB and MAPK (Ustun et al., 2006; Lee et al., 2007a). 
Similarly, several studies have shown that powerful anti-
oxidant vitamins such as α-tocopherol (vitamin E) and as-
corbic acid (vitamin C) could significantly reduce oxidative 
stress-induced mucosal damage (Oh et al., 2005). Moreover, 
it has been shown that the addition of vitamin C or vitamins 
C and E to the clarithromycin-amoxicillin-omeprazol triple 
therapy regimen significantly increased H. pylori eradication 
rates (Sezikli et al., 2009), as well as might further reduce the 
needed dosage of clarithromycin by 50% (Kaboli et al., 2009). 
Furthermore, data from a case-control study of the effect of 
vitamin E and C intake on the risk of gastric cancer dem-
onstrated that H. pylori-infected patients who had a high 
intake of the vitamins showed a lower risk of developing 
gastric cancer than those who had no vitamin supplements 
(Kim et al., 2005a, 2005b). Thus, vitamin supplementation 
may be effective for the treatment of H. pylori-induced 
disease.

Conclusion

It is clear that antibiotic resistant H. pylori is rapidly emerg-
ing in many areas. Given that this pathogen infects more 
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than half of the population of the world, this emergence is 
a potentially serious threat to public health. Since the treat-
ment regime for H. pylori is already complicated, it is un-
clear how a radical change in the overall use of traditional 
antibiotics can be instituted. Furthermore, even if a revi-
sion of antibiotic utilization was to happen, since H. pylori 
is genetically endowed with a high frequency of recombi-
nation and mutation (Kraft and Suerbaum, 2005), it is un-
clear if such a change would be effective. The emergence of 
antibiotic resistance has sadly prompted a longer duration 
of treatment and the use of more antibiotics. The unfor-
tunate effect of these changes is a perpetuation of a cycle of 
antibiotic-induced side effects, non-compliance, treatment 
failures, and resistant microorganisms. Moreover, these 
changes do not relieve the underlying selective pressure that 
drives the development of antibiotic resistance. Thus, a 
radical shift in the treatment of H. pylori is needed in order 
to prevent conventional antibiotics from becoming obsolete. 
In this review, we have attempted to highlight three poten-
tial areas that are being explored in order to identify novel 
drugs that could be used to combat H. pylori infection: anti-
microbial peptides, small molecule inhibitors and natur-
opathic therapy.
  While the results for each of these three possible therapies 
look promising, each will clearly require more studies with 
animals as well as human clinical trials to determine their 
overall effectiveness. Furthermore, it is possible that even if 
they are unsuccessful on their own, some of these therapies 
could potentially be used in combination with a single tradi-
tional antibiotic; this strategy could prolong the successful 
use of conventional antibiotics by sensitizing H. pylori to 
these drugs. Each of these possibilities remains to be explored. 
In the end, it is clear that successful treatment of H. pylori 
and associated gastric disease will require an integrated me-
thod of patient management that takes into account pro-
phylactic vaccinations, public health education and hygiene, 
efficient and cheap early diagnosis, and effective drugs.
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